Browsing Category

Climate Change

Climate Change

Declassified Spy Photos Reveal The True Scale of Melting of The Himalayan Glaciers

Mike  Mcrae 

MIKE MCRAE
Just under half a century ago a system of satellites codenamed Hexagon was circling the globe and snapping high-resolution shots of the changing landscape… not to mention a Russian airfield or two.

With the Cold War long melted, those images were declassified back in 2002, providing rich pickings for all kinds of research. Now scientists have used these pictures to present a startling new perspective on the Himalaya’s vanishing glaciers.

A team of US researchers from Columbia University and the University of Utah have made detailed measurements on changes to the thickness of ice in the Himalayas between two time periods; from 1975 to 2000, and then 2000 to 2016.

In some ways, what they found might not come as a great shock, if you’ve been paying attention to the climate crisis.

“It looks just like what we would expect if warming were the dominant driver of ice loss,” says the study’s lead author Joshua Maurer from Columbia University’s Lamont-Doherty Earth Observatory.

The team stitched together galleries of images of the Himalayas taken by the Keyhole-9 ‘Hexagon’ photographic reconnaissance satellites, ending up with an overview of some 650 glaciers spanning the famous mountain range.

They then developed a process to turn the 3D map into a form that provided information on elevations.

By comparing the results with modern stereo satellite imagery from NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) program, Maurer and his team could calculate annual changes to ice coverage.

Since the turn of the millennium, glaciers have thinned by an average of just under half a metre (roughly 1.5 feet) per year. Over the preceding decades, that loss was half; closer to 22 centimetres, or just under 10 inches.

That’s averaged out as well. While some glaciers at higher elevations are holding steady, there are rivers of ice closer to sea level that are losing on average 5 metres (16 feet) a year.

Of course, glaciers can thin out over time for a number of reasons. Lower precipitation, for example, or fine particulates from pollution increasing localised warming by darkening the ice and absorbing sunlight.

These factors can almost certainly contribute to the melting of large patches here and there, but the sheer scale of the change implies a more global effect.

To test their suspicions, the team also compiled data on temperatures taken by ground stations and compared these with rates of melting across the map.

Sure enough, both sets of figures lined up neatly enough to reveal that our warming planet can certainly account for the ice loss.

“This is the clearest picture yet of how fast Himalayan glaciers are melting over this time interval, and why,” says Maurer.

Further west, mountain ranges such as the Alps have attracted attention for accelerated melting of their icy peaks in the 1980s.

While it took a little longer to come up to speed, it’s now clear the Himalayas are rocketing ahead. Given the area they cover and their position, we can expect the melting of their glaciers to be a catastrophe of immense proportions.

Seasonal snowmelts contribute significant quantities of water to major river systems such as the Indus, where hundreds of millions rely on its flow and volume for drinking water, farming, and hydroelectricity.

Increased melting might temporarily be a boon, but in the long term, millions of people will face an increasing risk of water crisis.

Tragically, pooling meltwater is putting communities at greater risk of cataclysmic flooding as elevated lakes burst at the seams, sending walls of water crashing downhill.

In the 1970s, US authorities launched the Hexagon system of spy satellites partially in hope of having advanced warning of a building global threat.

Thankfully, that particular type of threat never eventuated. But now, nearly 50 years later, the same library of pictures has given us strong evidence of a much more serious threat. This time, it’s real.

This research was published in Science Advances.

Climate Change, Environment

Odisha to plant palms to arrest lightning bolts

Satyasundar Barik

The Odisha government has decided to revive the traditional practice of planting palm trees to deal with the issue of deaths caused by lightning every year. Approximately 500 lives are lost annually due to lightning in the State. Palm trees, being the tallest ones, act as a good conductor when lightning strikes.

Palm tree plantations will come up along the forest boundaries on National and State Highways and in common land in coastal villages. The State Forest and Environment Department has issued instructions to all regional conservators of forests and divisional forest officers in this regard.

Traditional practice

“Earlier, planting palm trees was a traditional practice in villages, but this has now been discontinued due to urbanisation and development. The tree has a wide range of uses — its fruits are eaten, the stem is valuable as wood, and baskets and mats are woven with the leaves. It is also learnt to be helpful as a bulwark against lightning casualties,” said D. Swain, principal chief conservator of forests.

“Lightning usually hits the tallest object first. The palm tree being the tallest among other trees in its surroundings works as a lightning conductor, decreasing deaths by lightning,” said Mr. Swain. Palm trees also protect coastal areas from storms and cyclones, while its roots protect embankments from soil erosion.

According to Bishnupada Sethi, managing director, Odisha State Disaster Management Authority (OSDMA), as many as 1,256 lightning deaths took place in the State in the last three years, most of them (about 85%) in the May-September period. Lightning deaths account for about 27% of the total number of ‘disaster deaths’.

The OSDMA has taken up a massive awareness drive, educating people on how to react during a thunderstorm.

The neighbouring Bangladesh, which also sees many deaths every year due to lightning strikes, has announced a similar programme to plant one million palm trees.

Climate Change

Increasing Lightning Death needs a new policy in Bangladesh and Northeast India

 The maximum lightning incidents are attributable to climate change in the entire Indian subcontinent, central Bangladesh and Northeast India in the Brahmaputra Basin. The Indian Meteorological Department (IMD) has recently issued a weather forecast for Assam and Meghalaya that, thunderstorm accompanied by lightning mostly occurred on March 5 and 6, 2019. The Weather Channels also predicted rain or snow accumulation in the east and Northeast India till Thursday evening. The fury of nature has been left many parts of Northeastern region of India in tatters. Incessant rainfall in most areas of Garo Hills in Meghalaya has left trails of destruction with houses, schools, and trees strewn in the aftermath of this horrific weather. While some districts of Assam and West Meghalaya have been partially affected, the districts of North and East Garo Hills in the state of Meghalaya were worst hit. Most lightning deaths and injuries occur when people are caught outdoors in the summer months during the afternoon and evening. Deaths from lightning strikes is now one of the most discussed subjects in the country. Most of the victims are the lone breadwinners in their families. The maximum lightning incidents in the entire Indian subcontinent occur in central Bangladesh and the states of Meghalaya, West Bengal, and Assam before the monsoon season (March-May) with 40 lightning strikes per square kilometer. The data of the National Crime Records Bureau (NCRB) says lightning kills more people in India than any other natural calamity. According to a 2014 NCRB report, out of 20,201 accidental deaths attributable to natural causes, 12.8 percent were due to a lightning strike. The 2014 report published by Indian Meteorological Department (IMD) reported the period between March 15 to June 15, 2014, Assam experienced the highest number of thunderstorms followed by Arunachal Pradesh in March, Meghalaya in April and Tripura in May and June. During the entire period, the frequency was the highest during the night (30 percent) followed by evening (21 percent). In Bangladesh the lighting strike death toll is unbelievable. On last May 2018, 29 people died from lightning in 12 districts in 24 hours, and almost all of them are farm workers. Earlier, at least 12 people died in March, and 58 people died in April 2018 in parts of Bangladesh, according to government data. In the last two days of April last year, as many as 33 people were killed as storms swept across the country, said Disaster Management Minister Mofazzal Hossain Chowdhury Maya. The number of deaths was 160 in 2015, 170 in 2014, 185 in 2013, 201 in 2012 and 179 in 2011. Lightning poses a significant threat as an increasing number of people are losing life due to the natural disaster every year, experts say. Scores of people die every year after being struck by lightning during the rainy season in Bangladesh, which runs from April to October. The officials say the numbers are exceptionally high this year. Every day 10 to 12 people are dying from a lightning strike. Authorities declared lightning strike to be a natural disaster after 82 people were killed in a single day in May 2016. Independent monitors estimated that some 349 Bangladeshis died from lightning that year. In Bangladesh, the thunderstorm usually occurs from March to May, but sometimes it takes place until October or November. Owing to a sudden change in weather, heavy rain and strong gales that originate in the Bay of Bengal, end up causing lightning strikes and loss of lives in the Bangladesh and Indian Northeast. According to a new study, the above numbers can dramatically increase if the current rate of global warming continues. As reported in the journal of Science, it is expected to see a 12% increase in lightning activity for every 1 degree centigrade (1.8 degrees F) of warming, meaning the U.S. could experience a 50% increase in strikes by the turn of the century. In affected regions, people suffer “light dumb” disorder and significantly suffer a moderate headache. Many people succumb to severe heart failures. In Bangladesh, there are records of people suffering light heart failure and neural damage. Moreover, some suffered from moderate skin irritation and headache and some with severe heart failure and neural damage disease. Is climate change responsible? Lightning emerged as a new natural disaster in the Northeast Indian states and the Bay of Bengal area. The Brahmaputra flows through the region and ends at the confluence of the Bay of Bengal. This entire region is prone to lightning because of its complex topography, killing many people every year. Studies have shown thunderstorms are very frequent during the pre-monsoon season over northeastern India and Bangladesh. They are especially distinctive by their nature and severity compared to other storms, which occur over some other regions or during some different seasons. Lightning, as well as thunder and storms, are hazardous. Mostly they appear together. Anyone can strike and kill people, and also trigger potentially devastating wildfires. Studies exploring how lightning could change with rising temperatures are few and far between, and those that have been conducted have produced wildly different results. For the current study, scientists from the University of California, Berkeley, started by examining the relationship between atmospheric variables and lightning rates. They hypothesized that two factors– precipitation (the amount of water that hits the ground) and the amount of energy available to make atmospheric air rise– could predict lightning flash rate. These variables can both be used as measures of storm convection (the vertical movement of air), a process that is known to generate lightning which requires two key ingredients: water in all three states (liquid, solid and gas) and quickly rising clouds to keep the ice suspended. Next, they applied these variables to 11 different climate models, all of which assume that there will be no significant drops in greenhouse gas emissions, and found that lightning would likely increase by around 12% per 1 degree Centigrade. Since it is predicted that temperatures will be around 4°C higher at the end of the century, this means there could be a 50% increase in strikes in the US by 2100. This could potentially mean more human injuries and more wildfires since around half of all fires are started by lightning. The entire Bay of Bengal, a part of Assam, Meghalaya and West Bengal are prone to lightning because of the complex topography. Studies have shown thunderstorms are very frequent during the pre-monsoon season in northeastern India and Bangladesh. They are especially distinctive by their nature and severity compared to other storms, which occur over some other regions or during some different seasons. Presently most scientists believe, with the increase in global temperature, the intensity of thunderstorms and lightning will magnify in intensity. The thundercloud formation because of excess heat over Bangladesh is resulting in thunderbolts and lightning, particularly in the regions where water bodies are high, such as Haor areas. The wind convergence occurs in active convection which is the upward movement of warm and moist air. The subsequent instability results in widespread precipitation with chances of thunderstorms. According to Prof Rashid, the temperature rose in April in Bangladesh, which has caused water to vaporize and leads to rain, clouds, and lightning. Bangladesh is witnessing increasing numbers of casualties from lightning, a natural disaster, for the last few days, mainly because of the rise in temperature that is leading to the formation of upper air circulation in the geographical region, experts say. The geographical location of Bangladesh with the Himalayas in the north, the Bay of Bengal in the south, as well as the Indian Ocean and Arabian sea in the proximity, it is adding to the creation of thunderstorms in the region. It is to be noted that Northeast India, together with Bangladesh, is one of the most thunderstorm-prone regions in the world, substantiated by Tetsuya Fujita of the University of Chicago in 1973. Fujita along with Allen Pearson had developed the Fujita Pearson Scale for measuring the damage caused by tornadoes. Of all the severe thunderstorm events in the Northeast region during the 55 years of the study period, about 30 percent of the incidents resulted from storms (nor’easters), with hail and lightning accounting for 18 percent and 10 percent of all recorded events. While severe thunderstorms can develop at any time of the year, over half of the severe thunderstorm events occurred in the region during March, April, and May, peaking during the latter months. A secondary peak in severe thunderstorm events occurs in September and is likely due to the impact of tropical cyclones or their remnants flowing from the warm waters of the Bay of Bengal. The data compiled by the ICRC on the occurrence of severe thunderstorm incidents show that they are first seen on an isolated day in February under the influence of a western disturbance, and it becomes a familiar feature during the hot afternoons of April to May to early morning hours of the next days. Summer monsoon season with 60 percent incidents is the most favored time of the year for the occurrence of lightning strikes in Assam, followed by pre-monsoon season with 32 percent of the incidents. During the 55-year study period, it was reported that 22 people died on an average per year from severe thunderstorm hazards in Northeast India. More than 60 percent of these death cases were due to lightning. In general, severe thunderstorm impacts like loss of life and injury, loss of livelihood and damage to infrastructure are significantly more on impoverished and vulnerable rural population in the western part of Assam. The total climatology of lightning activity showed that the region of the west of Assam experiences higher lightning activity. Another study published in the International Journal of Climatology in September 2015, which was carried out by Hupesh Choudhury, Partha Roy, Sarbeswar Kalita and Sanjay Sharma states that during the pre-monsoon season, the frequency of lightning is quite significant in the Northeast due to the interaction of moisture-laden wind with the complex topography of the region. The Meghalaya plateau and foothills of Patkai hill range, in particular, experience severe lightning. Iqbal R Tinmaker and Kaushar Ali of the Indian Institute of Tropical Meteorology finds almost the same result attributed to space-time variation of lightning activity over Northeast India. They revealed lightning flash rate density is the maximum over the west of northeast India. The study, published in Meteorologische Zeitschrift in April 2012, said this high flash rate density is attributable to the topography and the geography of the region, along with the moisture availability. The 2014 report published by Indian Meteorological Department (IMD) said the highest number of thunderstorms in each month of the storm period (March 15 to June 15, 2014) was recorded in Assam, followed by Arunachal Pradesh in March, Meghalaya in April and Tripura in May and June. During the entire period, the frequency was highest during the night (30 percent) followed by evening (21 percent). Apart from agriculture fishing is at risk condition at the time of thunderstorm and lightning and fishes were at very risk condition during TS ( thunder and storm) and lightning. Moreover, these (TS) affected agricultural production very much. For TS and lightning, agrarian land was unsuitable for agricultural production. Trees and crops were uprooted, damaged and fired. So, people lose their property and fail with their regular lifestyle. A thunderbolt struck farmers while they were working at paddy field and harvesting paddy field. Lack of Awareness It is observed, casualties are increasing because of a lack of awareness among people. We find that most illiterate and lack of knowledge about lighting as well as thunderstorm and they assume it as a supernatural phenomenon or God’s fury. Awareness is crucial to reduce the toll and its harmful impact. Routine research works involving government and NGO and government regulation are needed to mitigate the menace. Mohan Kumar Das, the senior research fellow of the Institute of Water and Flood Management (IWFM) at Bangladesh University of Engineering and Technology (Buet), said deaths from lighting could also be avoided if people take some cautious steps according to BMD. The Bangladesh government is deeply concerned about the peril of such incidents, but measures are not adequate. Moreover, Meteorologists from the developing world say lightning incidents and their impacts remain under-reported as they are sporadic, making them difficult to record. It is observed, the shortage of adequate tall trees in rural areas could be a reason for the rise in the number of deaths from lightning. So people should be aware of lightning protect forest and danger of standing under a lone high tree during bad weather. Bangladesh Government authority has recorded almost all records of lightning death, but governments in India have not done it. Despite being the most lightning-prone zone in the Northeast, Assam and Meghalaya governments do not have any separate programme to create awareness among the people about lightning and TS. The state revenue and disaster management authority do not have any independent campaign for lightning. Awareness is critical to reducing the toll and harmful impact. Routine research work with broad public awareness, government, and NGO participation, and government regulations are necessary for a safe and sound environment. The Bangladesh government is more concerned about the tragic incidents. But state governments of Assam and Meghalaya as well as Central Government in India are not profoundly involved yet. It needs an urgent policy, program, and execution at the grass-root level to address the problem. The data compiled by the ICRC on the occurrence of severe thunderstorm incidents show that they are first seen on an isolated day in February under the influence of a western disturbance, and it becomes a familiar feature during the hot afternoons of April to May to early morning hours of the next days. Summer monsoon season with 60 percent incidents is the most favored time of the year for the occurrence of lightning strikes in Assam, followed by pre-monsoon season with 32 percent of the incidents. During the 55-year study period, it was reported that 22 people died on an average per year from severe thunderstorm hazards in Northeast India. More than 60 percent of these death cases were due to lightning. In general, severe thunderstorm impacts like loss of life and injury, loss of livelihood and damage to infrastructure are significantly more on impoverished and vulnerable rural population in the western part of Assam. The total climatology of lightning activity showed that the region of the west of Assam experiences higher lightning activity. Another study published in the International Journal of Climatology in September 2015, which was carried out by Hupesh Choudhury, Partha Roy, Sarbeswar Kalita and Sanjay Sharma states that during the pre-monsoon season, the frequency of lightning is quite significant in the Northeast due to the interaction of moisture-laden wind with the complex topography of the region. The Meghalaya plateau and foothills of Patkai hill range, in particular, experience severe lightning. Iqbal R Tinmaker and Kaushar Ali of the Indian Institute of Tropical Meteorology finds almost the same result attributed to space-time variation of lightning activity over Northeast India. They revealed lightning flash rate density is the maximum over the west of northeast India. The study, published in Meteorologische Zeitschrift in April 2012, said this high flash rate density is attributable to the topography and the geography of the region, along with the moisture availability. The 2014 report published by Indian Meteorological Department (IMD) said the highest number of thunderstorms in each month of the storm period (March 15 to June 15, 2014) was recorded in Assam, followed by Arunachal Pradesh in March, Meghalaya in April and Tripura in May and June. During the entire period, the frequency was highest during the night (30 percent) followed by evening (21 percent). Apart from agriculture fishing is at risk condition at the time of thunderstorm and lightning and fishes were at very risk condition during TS ( thunder and storm) and lightning. Moreover, these (TS) affected agricultural production very much. For TS and lightning, agrarian land was unsuitable for agricultural production. Trees and crops were uprooted, damaged and fired. So, people lose their property and fail with their regular lifestyle. A thunderbolt struck farmers while they were working at paddy field and harvesting paddy field. Lack of Awareness It is observed, casualties are increasing because of a lack of awareness among people. We find that most illiterate and lack of knowledge about lighting as well as thunderstorm and they assume it as a supernatural phenomenon or God’s fury. Awareness is crucial to reduce the toll and its harmful impact. Routine research works involving government and NGO and government regulation are needed to mitigate the menace. Mohan Kumar Das, the senior research fellow of the Institute of Water and Flood Management (IWFM) at Bangladesh University of Engineering and Technology (Buet), said deaths from lighting could also be avoided if people take some cautious steps according to BMD. Despite being the most lightning-prone zone in the Northeast, Assam and Meghalaya governments do not have any separate program to create awareness among the people about lightning and TS. The state revenue and disaster management authority do not have any independent campaign for lightning.

by Chandan kumar Duarah

– See more at: http://southasiajournal.net/increasing-lightning-death-needs-a-new-policy-in-bangladesh-and-northeast-india/

Climate Change

‘Bangladesh’s geography will naturally counter sea level rise until it becomes too rapid due to climate change’

Saqib Sarke

Sea level rise is a concern in all coastal regions in the world. Bangladesh happens to be among the most vulnerable areas. But for all the talk about how vulnerable the country is, the river laden land has evolved to create mechanisms that naturally counter sea level rise. Environmental scientist Jonathan Gilligan says this aspect is often not understood. 

This is not to say there is no risk from human induced sea level rise and all the commotion about part of the country submerging underwater deserves less attention. But the geographical area known as Bangladesh has for centuries acted as the big basin that paves the way for the mighty Brahmaputra and Ganges to unite with the sea at the Bay of Bengal. The land has learned how to survive rise of water. 

It does so through the fascinating natural mechanism of depositing sediment. That is how it has managed to stay above water for thousands and thousands of years, said Prof Gilligan. But this might change quite soon.

An associate professor at Vanderbilt University in the United States, Gilligan studies the interactions between human society and the environment. 

His work requires an interdisciplinary approach, and as a result he often works with teams that have social scientists, natural scientists and engineers. The interdisciplinary approach is necessary to understand how the actions of communities affect environment around them and how the changing environment – that is changed both by the actions of the community and also actions from the outside like climate change then affect the livelihood of the community. 

“And by trying to understand the two together, we can then understand better how the environmental change will affect the community and how the community might adapt,” he said. 

Gilligan, who worked in Sri Lanka on how paddy farmers are affected by water scarcity, has carried out a lot of research work in the southwest coastal areas of Bangladesh.

“Climate change has a lot of effects on the ground. My focus primarily is on how the coastal communities are affected by increased flood hazards due to subsidence of the land combined with sea level rise and also how increasing salinity is affecting community,” he said. 

To understand the effects of sea level rise Gilligan looks at how the communities are using their land, how the polders are affecting the changing rivers and how they are affecting the land inside the polder.

“My group is currently studying how the erosion of the river banks and the formation of ‘ghashland’ is going to affect communities. And how climate change interacts with all the activities along the river; and the combination of the land use and the communities with the sea level rise. You need to understand the combination to understand the effect on the communities.”

Gilligan says the impacts of climate change and sea level rise is going to be very visible in the next 20 to 30 years and they will become increasingly severe through the rest of this century, because the sea level rise is speeding up. 

“But what often doesn’t get understood is there’s also a tremendous natural resource that Bangladesh has and this is the sediment that is carried in the rivers. Over the last several thousand years there has been natural sea level rise, which is not as severe as the human sea level rise.”

“But with the natural sea level rise the land has risen at the same rate as the sea level rise, because there is a natural balance between the sea level rise and the sediment that comes  with the rivers and deposit on the land,” he said. 

This will allow Bangladesh to survive natural sea level rise as it has for millenia.  And if the sea level rise does not exceed a certain level the land will simply rise at the same rate as the sea. 

“But if the sea level rise become too rapid or something stops the sediments coming in the river, either of those would mean sea level rise would become much more severe,” said Gilligan.

With the Polar ice melting at unprecedented rates, the worse case scenario is not out of the picture. In fact, as scientists estimate, it is imminent. 

“Some lands can be rescued from the sea level rise, because there’s enough sediment to build up the land by several milimetres  per year. The question is how the rivers and the land and the polders are managed to try to get the maximum benefit from that sediment, to raise the land up as much as possible, so that the sea level rise does not drown too much.”

Gilligan is currently studying how the changes from human contribution are affecting migration. 

“There will be migration from places where the rise is too rapid. But migration does not happen just because of environmental stresses. It happens for economic reasons. What becomes very important to understand is that migration can be a valuable response to climate change. But it can also bring economic opportunities to pull people out of poverty,” he said. 

Bangladeshi people have traditionally employed many mechanisms to cope with the natural floods that occur regularly in the delta. Embankments are one of the methods that have been used for many years. A previous study by Gilligan found that embankments across the coastal plain of Bangladesh for preventing tidal inundation of the landscape also caused disruption in sediment flow. 

While these embankments were necessary for rice cultivation and to prevent food shortages in Bangladesh, these also cut off Bangladeshi lands from their riverine sediment supply. Consequently, most lands today have subsided far below mean high water levels, making them increasingly susceptible to severe flooding from waterlogging and the impacts of storm surges.

The study, where Gilligan was one of the researching scientists, found that embankments constructed since the 1960s are the main reason for lower land elevations along coastal areas in Bangladesh. Within this area, some are experiencing more than twice the rate of the most worrisome sea-level rise projections from the United Nations’ Intergovernmental Panel on Climate Change.

Gobeshona Conference_2019_7

Disruption to sediment transfer is also likely to happen from river diversion projects by India. The Farakka Barrage has caused significant political tension since the 90s between Bangladesh and its big neighbour. But Farakka actually does not stop sediment flow to any significant level, Gilligan said. 

“The Farakka Barrage has been very controversial. The research by some of my colleagues who I work closely with, they are geologists – that research is suggesting that Farakka Barrage has not been significantly affecting the sediment transport,” said Gilligan. 

However, this will not be the case if India implements its other river diversion projects.

“If India implements the big river diversion project that is being considered, that could have very serious impact. That could divert a lot of sediment out of the river. An it could cause harm to Bangladesh,” he said. 

Jonathan Gilligan is currently developing models to study how the diversion of sediment could affect the adaptive capacity of sea level rise within Bangladesh.

Climate Change

With rising sea levels, Bangkok struggles to stay afloat

BANGKOK: As Bangkok prepares to host climate-change talks, the sprawling city of more than 10 million is itself under siege from the environment, with dire forecasts warning it could be partially submerged in just over a decade.

A preparatory meeting begins Tuesday in Thailand’s capital for the next UN climate conference, a crunch summit in Poland at the end of 2018 to set rules on reducing greenhouse emissions and providing aid to vulnerable countries.

As temperatures rise, abnormal weather patterns — like more powerful cyclones, erratic rainfall, and intense droughts and floods — are predicted to worsen over time, adding pressure on governments tasked with bringing the 2015 Paris climate treaty to life.

Bangkok, built on once-marshy land about 1.5 metres (five feet) above sea level, is projected to be one of the world’s hardest hit urban areas, alongside fellow Southeast Asian behemoths Jakarta and Manila.

“Nearly 40 percent” of Bangkok will be inundated by as early as 2030 due to extreme rainfall and changes in weather patterns, according to a World Bank report.

Currently, the capital “is sinking one to two centimetres a year and there is a risk of massive flooding in the near future,” said Tara Buakamsri of Greenpeace.

Seas in the nearby Gulf of Thailand are rising by four millimetres a year, above the global average.

The city “is already largely under sea level”, said Buakamsri.

In 2011, when the monsoon season brought the worst floods in decades, a fifth of the city was under water. The business district was spared thanks to hastily constructed dikes.

But the rest of Thailand was not so fortunate and the death toll passed 500 by the end of the season.

Experts say unchecked urbanisation and eroding shorelines will leave Bangkok and its residents in a critical situation.

With the weight of skyscrapers contributing to the city’s gradual descent into water, Bangkok has become a victim of its own frenetic development.

Making things worse, the canals which used to traverse the city have now been replaced by intricate road networks, said Suppakorn Chinvanno, a climate expert at Chulalongkorn University in Bangkok.

“They had contributed to a natural drainage system,” he said, adding that the water pathways earned the city the nickname ‘Venice of the East’.

Shrimp farms and other aquacultural development — sometimes replacing mangrove forests that protected against storm surges — have also caused significant erosion to the coastline nearest the capital.

This means that Bangkok could be penned in by flooding from the sea in the south and monsoon floods from the north, said Chinvanno.

“Specialists anticipate more intense storms in this region in the years to come.”

Narong Raungsri, director of Bangkok’s Department of Drainage and Sewage, admitted that the city’s “weaknesses” stem from its small tunnels and the hyper-development of neighbourhoods.

“What used to act as water basins are now no more,” Raungsri said.

“Our system can only handle so much — we need to enlarge it.”

Today, the government is scrambling to mitigate the effects of climate change, constructing a municipal canal network of up to 2,600 kilometres with pumping stations and eight underground tunnels to evacuate water if disaster strikes.

Chulalongkorn University in 2017 also built in central Bangkok an 11-acre park specially designed to drain several million litres of rain and redirect it so surrounding neighbourhoods are not flooded.

But these ad-hoc fixes may not be enough.

“We need a clear policy of land management,” said Greenpeace’s Buakamsri, adding that the need for increased green spaces is outweighed by developers’ interests.

“The high price of land in Bangkok makes economic interests a priority.”

Climate Change

Snowfall On Tyrol’s Mountain Drops

by LISA FISCHER

The roller coaster of temperatures: From more than 30 degrees, the values ​​tumbled in recent days by more than 15 degrees down. It rained in the Tyrolean valleys – and on the mountains fell the first snowflakes. During the night on Sunday, the snowfall fell to around 1,500 meters.

Measuring stations at the Sonnblick and at the Rudolfshütte in the Hohe Tauern, there were about 40 centimeters of fresh snow, reported the Central Institute for Meteorology and Geo-dynamics. At the Stubai Glacier 20 centimeters of fresh snow lay in the morning, at the Hintertuxer Glacier it was 30 centimeters.

Below the valleys there was a hint of autumn: dark clouds and early temperatures of less than 10 degrees caused the Tyrolians to shiver. Low temperatures of 1.4 degrees were measured in Sillian, 2.7 degrees in Virgen and 3.2 degrees in Hochfilzen. This makes the Tyrolean resorts one of the coldest in Austria.

tyrols-mountain

The snow on Austria’s mountains led to traffic obstructions in alpine locations on Sunday morning. Some higher mountain roads from Tyrol to Styria were not passable after snowfall – at least temporarily. The Hahntennjoch was open again in the morning. The snow on the Turracher Straße (B95) in the Turracher Höhe area were cleared relatively quickly. The Sölkpass road (L704) had to be closed between Stein an der Enns (Liezen district) and Baierdorf in the Murau district. The same was true for the Kärntner Nockalm road.

But do not worry, the summer comes back in the new week with all your strength. While in the lowlands partly strong showers descend, from the Oberland the clouds break up more and more in the course of the Sunday. The daily maximums are between 11 and 19 degrees.

On Monday, the sun is shining again from the sky, after a cool autumn start the temperatures rise rapidly to 19 to 24 degrees. It will be a few degrees warmer on Tuesday. According to weather forecasts, up to 28 degrees in the Tyrol are possible again. Only now and then do a few harmless clouds move across the sky.

On Wednesday it will be summerly hot from Vorarlberg to Salzburg with peaks of around 31 degrees. From Thursday, the shower and thunderstorm to increase again, the temperatures to remain same on a late summer level.

Sources: tt news

Ahrntal, the pearl of Tyrol in the extreme north of Italy

Across the Ahrntal, from Campo Tures to the border with Austria, in one of the most pristine